RESEARCH ARTICLE

OPEN ACCESS

Determination of Material for Shaft Design Using on Grey Correlation Analysis and TOPSIS Method

B. Siva Kumar¹*, J.Sushma²

Assistant Professor*^{1,2}, Department of Mechanical Engineering VNR Vignan Jyothi Institute of Engineering & Technology^{1,2}, Hyderabad, India

ABSTRACT

Machines, automobiles, aircrafts and many other applications have shaft as major mechanical component which must have a proper design, in-order to have the efficient transmission of power from one element to another. For the design of shaft an appropriate range of evaluation, general product form and processing methods for material must be made. The selection of material should be done by using multiple attribute decision methods (MADM). In this paper, Grey Correlation Analysis and TOPSIS Method is proposed in order to decide a suitable material by considering different attributes and graphical representations are made for different attributes verse materials and vice versa.

Keywords - Shaft; Materials; Design constraints; Grey Correlation Analysis, TOPSIS Method

I. INTRODUCTION

The Shaft transfers the power from one end to another, thus they subjected to torque and are to be acclaimed from axles for support rotating moments Material Engineering mainly focuses on the optimization of materials according to different applications in high-end. Considering different properties and characteristics of material modelling is essential in relating mechanical, chemical and thermal impacts [1-2]. According to the properties only the way of material will change in the usage for a specific application, materials like metals, alloys, polymers, ceramics and high-ended properties based materials will give reliability and lifespan of components during operation. In recent years Shaft design enterprises have experienced unprecedented crisis of quality credit. The quality credit is gradually put onto the cusp as a crucial social issue. Some companies collapse instantly owing to their terrible quality credit while others struggle to survive in this battle. In order to strengthen the internal and external regulatory efficiency of the enterprises, comprehensively improve the quality of products, reduce the safety risk in some areas, and improve people's satisfaction at the same time, to improve credit system construction and establish a scientific and reasonable credit evaluation system is the current urgent need in our country.

A lot of domestic scholars have already done some researches on quality credit evaluation. The classical MCDM method technique for order preference by similarity to ideal solution (TOPSIS) was used by ZHU [3]. However, AHP, which is consisted of more qualitative ingredient, needs too many large amounts of data statistics and weights to easily determine. TOPSIS can't reflect the difference between internal factors' change trend and the ideal solution well. Some scholars have tried to combine TOPSIS with grey correlation analysis so that the combination can more accurately describe the integration degree of alternative and ideal schemes, and used to compare the superiority of alternative schemes [4-6]. Now this paper attempts to use the combination of Grey Correlation Analysis and TOPSIS Method For the analysis of multiple attributes to solve material used for design of shaft with multi attribute optimization

II. SHAFT MODEL

Shafts are usually cylindrical machine component that transmits power. The shaft is designed on the basis of strength and its rigidity and stiffness. Shafts are subjected from the axles but only to bending loads and will not transfer power and torque [7-9]. The Figure 1 represents the materials used in manufacturing industries from BC to date. The Shaft is linked with different ways which will be flexible. As torque transmitted by shaft remains constant for a long time, the shearing stress on the shaft cross-section changes much less frequently. Every System will have regulations for making specialized and standardization a product. For the better gains and good product along with above attributes Laboratory analysis must be made for the product.

Fig.1 Materials from BC to date

For the better gains and good product mechanical properties play a major role [10]. In metals, the properties which has to satisfy as per the standard values are Modulus of elasticity, Ductility, Fatigue strength, Impact strength, Coefficient of thermal expansion, Density, Yield strength, Shear strength, Tensile strength, Thermal conductivity, toughness etc and in polymers, the properties like Stability, Stiffness, Chemical, absorption & electrical resistance etc.

Fig.2 Analytical Process for Selection of Material for Design

Above Fig.2 is an analytical approach for selection of material. Initial Considerations are done according to the Users and Consumers, in the above fig all the attributes are represented as per user's requirements [11]. According to the User desire and company's availability among all three attributes are considered at company levels. Company will assign the needs to design engineer, for the better product output design will consider four attributes as shown in the figure. Considering all the attributes selection of material is done for any product manufacturing (shaft)

III. PROPOSED METHODOLOGY

For the Evalution of best material for the design of shaft this paper uses the improved TOPSIS model by grey correlation analysis. The Proposed Method is as follows: **Step 1:** In the first step, we have to determine the objective and to identify the attribute values for each material.

Step 2: This step involves the development of matrix formats. The decision making matrix can be expressed as:

	x_{11}	<i>x</i> ₁₂	x_{13}		x_{1n}
	x_{21}	<i>x</i> ₂₂	x_{23}		x_{2n}
_	<i>x</i> ₃₁	x_{32}	x_{33}		x_{3n}
D =	.	•		:	•
	.	•	•		.
	x_{m1}	Xm2	X m 3		χ_{mn}

Step 3: Then using the above matrix to develop the normalized decision matrix with the help of the formula given below:

$$X_{ij}^* = \frac{X_{ij}}{\sum_{i=1}^n X_{ij}}$$

Step 4: Depending upon the relative importance of different attributes obtain weight for each attributes using the formula given below and the sum of the weights should be 1. Where V_j is the variance of each attribute which can be calculated by the formula given as

$$W_{j} = \frac{V_{j}}{\sum_{j=1}^{m} V_{j}},$$
$$V_{j} = (\frac{1}{n}) \sum_{i=1}^{n} (X_{ij}^{*} - (X_{ij}^{*})_{mean})^{2}$$

Step 5: Then obtain the weighted, normalized matrix v_{ij} by multiplying W_j with all the values X_{ij}^* such as equations

a) The Ideal solution

$$A^{+} = \{v_{1}^{+}, \dots, v_{m}^{+}\} \\= \{(maxv_{ij} \setminus j\epsilon I'), (minv_{ij} \setminus j\epsilon I'')\}$$

b) The negative ideal solution

$$A^{-} = \{v_{1}^{-}, \dots, v_{m}^{-}\}\$$

= {(minv_{ij} \j \ele I'), (maxv_{ij} \j \ele I'')}

Here,

 $I'=\{j{=}1,\,2\,\ldots\,n\mid j\}$: Associated with the beneficial attributes

I"= $\{j=1, 2... n \mid j\}$: Associated with non-beneficial adverse attributes

Step 6: Obtain separation (distance) of each alternative from the ideal solution and negative ideal solution which is given by the Euclidean distance given by the equations:

$$D_i^+ = \sqrt{\sum_{j=1}^m (v_{ij} - v_j^+)^2}$$
, $i = 1, 2, ..., m$

$$D_i^- = \sqrt{\sum_{j=1}^m (v_{ij} - v_j^-)^2}$$
, $i = 1, 2, ..., n$

Step 7: Calculate grey correction degree based on the normalized matrix Y, the grey correction degree of the i_{th} enterprise to the j_{th} indicator of PIS and NIS are [12-14]:

$$s_{ij}^{+} = \frac{\min_{i} \min_{j} |v_{ij} - v_{j}^{+}| + \rho \max_{i} \max_{j} |v_{ij} - v_{j}^{+}|}{|v_{ij} - v_{j}^{+}| + \rho \max_{i} \max_{j} |v_{ij} - v_{j}^{+}|}$$
$$\min_{i} \min_{j} |v_{ij} - v_{j}^{-}| + \rho \max_{i} \max_{j} |v_{ij} - v_{j}^{-}|$$

$$|v_{ij} - v_j^-| + \rho \max_i \max_j |v_{ij} - v_j^-|$$

Normal range of ρ is in the interval [0, 1]. According to experience, let $\rho = 0.5$ in this access. Relational matrix can be expressed as:

$$W^{+} = \begin{bmatrix} s_{11}^{+} & s_{12}^{+} & s_{13}^{+} & \dots & s_{1n}^{+} \\ s_{21}^{+} & s_{22}^{+} & s_{23}^{+} & \dots & s_{2n}^{+} \\ s_{31}^{+} & s_{32}^{+} & s_{33}^{+} & \dots & s_{3n}^{+} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ s_{m1}^{+} & s_{m2}^{+} & s_{m3}^{+} & \dots & s_{mn}^{+} \end{bmatrix}$$
$$W^{-} = \begin{bmatrix} s_{11}^{-} & s_{12}^{-} & s_{13}^{-} & \dots & s_{1n}^{-} \\ s_{21}^{-} & s_{22}^{-} & s_{23}^{-} & \dots & s_{2n}^{-} \\ s_{31}^{-} & s_{32}^{-} & s_{33}^{-} & \dots & s_{3n}^{-} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ s_{m1}^{-} & s_{m2}^{-} & s_{m3}^{-} & \dots & s_{mn}^{-} \end{bmatrix}$$

The grey correction degree of the i_{th} enterprise to PIS and NIS are:

$$W_i^+ = \frac{1}{n} \sum_{j=1}^n s_{ij}^+, i = 1, 2, \dots, m$$
$$W_i^- = \frac{1}{n} \sum_{i=1}^n s_{ij}^-, i = 1, 2, \dots, m$$

Step 8: calculate the relative closeness, realize the best rank of *m* enterprises. Dimensionless Euclidean distance and grey correction degree are respectively represented as D_i^+ , D_i^- , W_i^+ , and W_i^-

$$T_i^+ = e_1 D_i^- + e_2 W_i^+$$
, $i = 1, 2, ..., m$

$$T_i^- = e_1 D_i^+ + e_2 W_i^-$$
, $i = 1, 2, ..., m$

Where $\mathbf{e_1}$ and $\mathbf{e_2}$ reflect the degree of decisionmakers' preference, and $\mathbf{e_1} + \mathbf{e_2}=1$ Where T_i^+ and T_i^- respectively represents the approaching degree from the i_{th} enterprise to PIS and NIS.

$$\xi_i = \frac{T_i^+}{(T_i^+ + T_i^-)}$$
 i = 1,2, ... n

Where ξ_i is called best quality score in this study representing the relative approaching degree of the i_{th} enterprise to PIS and NIS

Step 9: Rank the materials according to their quality scores.

According to the result we get from step 8, rank the materials by their quality scores. When ξ_i is bigger, its enterprise is closer to the positive ideal, and vice versa.

IV. DISCUSSIONS

For the selection of material data is collected for a few materials as shown in Table 1. Step by step procedure is done for the proposed methodology as shown in Appendix. The graphical representations Figure 3& 4 will give a clear idea for the best material among individual attributes for the collected data. According to the collected data of different materials with specific attributes, the proposed methodology is applied and decision for the selection of material in designing a shaft.

Fig.3 Graphical representation for Collected Data

Fig.4 Graphical representation for Result of Proposed Method

V. CONCLUSION

In this paper, Grey Correlation Analysis and TOPSIS Method is applied for the selection of

www.ijera.com

material for the design of the shaft. As the shaft is the major device in the smooth running of a machine. Since the proposed methodology, data are collected as per the sources given by manufacturing industries for each material. Among all the materials, steels, aluminum alloys, Titanium alloys, Ceramics, Carbon Fibers and Kevlar Fibers are considered with attributes Modulus of Elasticity (E) (GPA), Yield Stress (Y) (MPa), Ultimate Tensile Strength (UTS) (MPa), Poisson's ratio (v) and Density (p). Analysis is done for having a decisive material as result for the design of the shaft for the smooth controlling of any machine according to the application. On the other hand, with the change of materials according to the applications we can get a decisive material for the application as the proposed methodology give the best decision in selecting of material. Graphical representations and discussions also demonstrated that materials which are used for the design of the shaft can be selected or decided for manufacturing of the shaft.

REFERENCES

- Anthony Kelly, Carl H, Zweben" [1] Comprehensive composite Materials".
- "Computer-aided mechanical design and [2] analysis", 3rd Edition, McGraw-Hill, New York.
- [3] V. Hubka, "Principles of Engineering Design", Butterworth Scientific, 1982
- [4] G. Pahl and W. Beitz, "Engineering Design", K.M. Wallace, Ed., The Design Council, 1984
- Gupta, D. and Buzacott, J. A. 1989. "A [5] Framework for Understanding Flexibility of Manufacturing Systems." Journal of Manufacturing Systems 8:89-97.

- K.M. Wallace, "A Systematic Approach to [6] Engineering Design, Design Management: A Handbook of Issues and Methods", M. Oakley, Ed., Basil Blackwell Ltd., 1990
- [7] C. Hales, Managing Engineering Design, Longman Scientific & Technical, 1993
- [8] Alabaş, Ç., Altıparmak, F., Dengiz, B. 2000. "The Optimization of Number of Kanbans with Genetic Algorithms, Simulated Annealing and Tabu Search." Evolutionary Computation.
- [9] V. B. Bhandari, Design of Machine Element, (Tata McGraw-Hill Publication. New Delhi.2004)
- [10] Y. Sun, The industry enterprise quality credit evaluation establishment application Shandong province. Shandong in University, 2012.
- W. Qian and Y. Dang, Based on the grey [11] relation of fixed weight TOPSIS method and its application. System Engineering, 2008, 27(8):124-126. (In Chinese)
- [12] H. Leng, Study on the Combination of the TOPSIS optimization and GREY relevancy in The Projects of Sichuan Agricultural Industrialization. Southwestern university of Finance and Economics, 2012. (In Chinese)
- [13] Groover, M.P. 2007.Automation, Production Systems, and Computer Integrated Manufacturing. Third Edition. Prentice Hall Press Upper Saddle River, NJ, USA.
- [14] Kuo, Y., Yang T., Huang G.W. 2008. "The use of a grey based Taguchi method for optimizing multi response simulation problems." Engineering Optimization 40 (6):517-528

Appendix

Table 1: Collected data for selection of material							
Materials	MOE	YS	UTS	PR	D		
Steels	195	1000	1500	0.32	8000		
Aluminum and its alloys	65	500	100	0.33	2700		
Titanium and its alloys	120	400	1000	0.34	4450		
Ceramics	100	0	2500	0.2	5000		
Carbon fibers	300	0	2100	0.22	1800		
Kevlar fibers	70	0	2800	0.36	1400		

MOE=Modulus of Elasticity (E) (GPa), YS=Yield stress (Y) (MPa), UTS=Ultimate Tensile Strength (UTS) (MPa), PR=Poisson's ratio (v), D=Density (ρ) (kg/m3)

For the Table 1 normalization is done and normalized decision matrix is computed

Table 2: Normalized Decision matrix										
Materials		MOE	YS	UTS	PR	D				
Steels		0.4851556	0.842151921	0.3215598	0.4335024	0.7263				
Aluminum and	its									
alloys		0.1617185	0.421075961	0.02143733	0.44704942	0.24518				
Titanium and	its									
alloys		0.2985573	0.336860768	0.21437321	0.4605963	0.40407				
Ceramics		0.2487977	0	0.53593309	0.2709390	0.45397				
Carbon fibers		0.7463933	0	0.45018376	0.2980329	0.16349				
Kevlar fibers		0.1741584	0	0.60024508	0.4876902	0.12719				

MOE=Modulus of Elasticity (E) (GPa), YS=Yield stress (Y) (MPa), UTS=Ultimate Tensile Strength (UTS) (MPa), PR=Poisson's ratio (ν), D=Density (ρ) (kg/m3)

From Table 2 weighted normalized decision matrix is computed

Table 3: Weighted Normalized Decision matrix									
Materials	MOE	YS	UTS	PR	D				
Steels	0.104312134	0.188631257	0.069261672	0.094771103	0.087534				
Aluminum and its									
alloys	0.034770711	0.094315628	0.004617445	0.0977327	0.029543				
Titanium and its									
alloys	0.064192083	0.075452503	0.046174448	0.100694297	0.048691				
Ceramics	0.053493402	0	0.115436119	0.059231939	0.054709				
Carbon fibers	0.160480207	0	0.09696634	0.065155133	0.019695				
Kevlar fibers	0.037445382	0	0.129288454	0.10661749	0.015318				

MOE=Modulus of Elasticity (E) (GPa), YS=Yield stress (Y) (MPa), UTS=Ultimate Tensile Strength (UTS) (MPa), PR=Poisson's ratio (v), D=Density (ρ)(kg/m3)

From Table 3, the ideal solution & negative ideal solution are computed by using eqns

 $A^{+} = \{v_{1}^{+}, \dots, v_{m}^{+}\} = \{(maxv_{ij} \setminus j\epsilon I'), (minv_{ij} \setminus j\epsilon I'')\}$ $A^{-} = \{v_{1}^{-}, \dots, v_{m}^{-}\} = \{(minv_{ij} \setminus j\epsilon I'), (maxv_{ij} \setminus j\epsilon I'')\}$

	Table 4: T	he Ideal soluti	on & Negative	e ideal solution	
A^+	0.1604802	0.1886312	0.1292884	0.1066174	0.087534
A^{-}	0.0347707	0	0.0046174	0.0592319	0.015318

By using Table 4, ideal solution (D_i^+) , and the negative ideal solution (D_i^-) is computed using

$D_i^+ = $	$\sum_{j=1}^{m} \left(v_{ij} - v_j^+ \right)^2, D_i^- = \sqrt{\frac{1}{2}}$	$\sum_{j=1}^m (v_{ij} - v_j^-)^2$
	Table 5. Ideal Solution	matrix

Materials	MOE	YS	UTS	PR	D			
Stoola			0.00360321	0.00014033				
Steels	0.003154852	0	5	7	0			
Aluminum and				7.89395E-				
its alloys	0.015802877	0.008895438	0.01554286	05	0.003363			
Titanium and			0.00690793	3.50842E-				
its alloys	0.009271403	0.01280943	8	05	0.001509			
Coromics			0.00019188					
Cerannes	0.011446176	0.035581751	7	0.00224539	0.001077			
Carbon fibora			0.00104471	0.00171912				
Carbon fibers	0	0.035581751	9	7	0.004602			
Kevlar fibers	0.015137568	0.035581751	0	0	0.005215			

MOE=Modulus of Elasticity (E) (GPa), YS=Yield stress (Y) (MPa), UTS=Ultimate Tensile Strength (UTS) (MPa), PR=Poisson's ratio (v), D=Density (ρ)(kg/m3)

www.ijera.com

Table 6: Negative Ideal Solution matrix										
Materials	MOE	YS	UTS	PR	D					
Steels	0.004836009	0.035581751	0.004178876	0.001263032	0.005215					
Aluminum and its										
alloys	0	0.008895438	0	0.001482309	0.000202					
Titanium and its										
alloys	0.000865617	0.00569308	0.001726984	0.001719127	0.001114					
Ceramics	0.000350539	0	0.012280779	0	0.001552					
Carbon fibers	0.015802877	0	0.008528319	3.50842E-05	1.92E-05					
Kevlar fibers	7.15386E-06	0	0.01554286	0.00224539	0					

MOE=Modulus of Elasticity (E) (GPa), YS=Yield stress (Y) (MPa), UTS=Ultimate Tensile Strength (UTS) (MPa), PR=Poisson's ratio (v), D=Density (ρ)(kg/m3)

Compute grey correction degree based on the normalized matrix Y, the grey correction degree of the i_{th} enterprise to the j_{th} indicator of PIS and NIS are:

$c^+ - \frac{r}{r}$	nin _i min	$_{j} v_{ij}-v_{j} $	$ +\rho ma$	x _i ma	$ \mathbf{x}_j v_{ij} - 1$	$\frac{v_j^+}{s}$ = -	$-\frac{\min_{i}}{1}$	min _j v _{ij}	$-v_j^- +\rho$) max _i	max _j v	$ ij - v_j^- $
s _{ij} – -	v _{ij}	$-v_j^+ +\rho$	max _i ma	$ v_i $	$ j-v_j^+ $	—, s _{ij} -	_	$ v_{ij}-v_j^- $	+ρ max	_i max	$ v_{ij}-v_{j} $	- i
$W^+ =$	$\begin{bmatrix} s_{11}^+ \\ s_{21}^+ \\ s_{31}^+ \\ \vdots \\ \vdots \\ s_{m1}^+ \end{bmatrix}$	s_{12}^+ s_{22}^+ s_{32}^+ \vdots s_{m2}^+	$s^+_{13} \\ s^+_{23} \\ s^+_{33} \\ \vdots \\ s^+_{m3}$: 	$\left[\begin{array}{c} s_{1n}^{+} \\ s_{2n}^{+} \\ s_{3n}^{+} \\ \vdots \\ s_{mn}^{+} \end{array} \right],$, <i>W</i> ⁻ =	$\begin{bmatrix} s_{11}^{-} \\ s_{21}^{-} \\ s_{31}^{-} \\ \vdots \\ \vdots \\ s_{m1}^{-} \end{bmatrix}$	s_{12}^{-} s_{22}^{-} s_{32}^{-} : s_{m2}^{-}	s_{13}^{-} s_{23}^{-} s_{33}^{-} \vdots s_{m3}^{-}	 : 	$ \begin{array}{c} S_{1n}^{-} \\ S_{2n}^{-} \\ S_{3n}^{-} \\ \vdots \\ S_{mn}^{-} \end{array} \right] $	

Table 7: Grey correction degree PIS matrix

Materials	MOE	YS	UTS	PR	D
Steels	0.056168	0	0.060027	0.011846	0
Aluminum and its					
alloys	0.125709	0.094316	0.124671	0.008885	0.057991
Titanium and its alloys	0.096288	0.113179	0.083114	0.005923	0.038843
Ceramics	0.106987	0.188631	0.013852	0.047386	0.032825
Carbon fibers	0	0.188631	0.032322	0.041462	0.067839
Kevlar fibers	0.123035	0.188631	0	0	0.072215

MOE=Modulus of Elasticity (E) (GPa), YS=Yield stress (Y) (MPa), UTS=Ultimate Tensile Strength (UTS) (MPa), PR=Poisson's ratio (ν), D=Density (ρ)(kg/m3)

Table 8: Grey correction degree NIS matrix									
Materials	MOE	YS	UTS	PR	D				
Steels	0.069541	0.188631	0.064644	0.035539	0.072215				
Aluminum and its									
alloys	0	0.094316	0	0.038501	0.014224				
Titanium and its									
alloys	0.029421	0.075453	0.041557	0.041462	0.033372				
Ceramics	0.018723	0	0.110819	0	0.03939				
Carbon fibers	0.125709	0	0.092349	0.005923	0.004377				
Kevlar fibers	0.002675	0	0.124671	0.047386	0				

MOE=Modulus of Elasticity (E) (GPa), YS=Yield stress (Y) (MPa), UTS=Ultimate Tensile Strength (UTS) (MPa), PR=Poisson's ratio (v), D=Density (ρ)(kg/m3)

$$\xi_i = \frac{T_i^+}{(T_i^+ + T_i^-)} i = 1, 2, ... n$$

www.ijera.com

Where ξ_i is called best quality score in this study representing the relative approaching degree of the i_{th} enterprise to PIS and NIS

Table 8: Best Quality Score (ξ_i)							
Materials	ξi						
Steels	0.515082042						
Aluminum and its							
alloys	0.414651868						
Titanium and its alloys	0.400188733						
Ceramics	0.462991119						
Carbon fibers	0.472134171						
Kevlar fibers	0.442377011						

From the Best Quality score values the optimal value is finally determined such that the larger value indicates better quality.